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SUMMARY

This paper details an approach to modelling gas–solid fluidized beds using the two-fluid granular
temperature model. Details concerning the difficulties associated with the boundary conditions, particu-
larly for curved boundaries, are described along with a novel means of obtaining the internal stress of the
solid-phase, in part, by solving an implicit equation. This results in a scheme that is stable even when the
solid volume fraction is close to maximum packing. A transient, mixed finite element discretization is
used to solve the multi-phase equations with a discontinuous finite element representation of the granular
temperature and continuity equations. A new solution method is proposed to solve the coupled
momentum and continuity equations based on Arnoldi iteration. Two fluidized beds are modelled, one
in the bubbling regime and the other in the slugging regime. These simulations are compared with
experiments. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: granular temperature; finite elements; fluidization; fluidized bed; multi-phase flow; numer-
ical simulation; two-fluid model

1. INTRODUCTION

Fluidization is observed when a bed of solid particles comes into contact with a vertical
upward fluid flow within a particular range of flow velocity [1]. Fluidized beds have many
industrial applications, which can be classified according to their physical or chemical
processes. Some examples of applications include solid drying, food freezing, granulation,
dust/particle filtration, coating of pharmaceutical tablets, etc. Fluidized beds in the chemical
industry include those in which the solid acts as catalyst or heat sink, such as in oil cracking
for manufacturing of various chemical substances, and those in which solids undergo a phase
change, such as in coal combustion, coal gasification, etc. Fluidized beds are used in industry
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because of their large area of contact between the different phases, which enhances chemical
reactions, heat transfer [2], mass transfer [3], etc. The predictive ability of numerical modelling
appears to be a promising means of improving the efficiency of these beds and their processes.

Modelling the gas fluidization of particles and associated dynamics is a complex and
challenging problem. Numerical approaches used include modelling the individual collisions
(tracking individual particles) between particles subjected to the drag forces exerted by the
fluidizing gases [4,5]. There are two models used to deal with interparticle collisions: the hard
sphere model and the soft sphere model [6,7]. In these models, the impulse equations together
with the restitution coefficient relate the velocities of particles before and after the collision. In
the soft sphere model, the forces acting on the particle during contact are also considered. This
is perhaps the most fundamental viable modelling approach. It explicitly models granular
turbulence, but is computationally expensive when the particles are closely packed as in a
typical fluidized bed. A model of individual particles’ motions along with the flow around
these has been developed for the two-dimensional case in Reference [8] using a moving finite
element and adaptive meshing method. Some of the general properties of particles’ motions
were observed in the resulting simulations, such as a tendency for particles to collect together.

A scattering kernel for each fluid element could be calculated based on probabilities that
depend on the angular and speed distribution of particles within the fluid element. This kernel
can be used to construct the associated Boltzmann equation, which could be solved determin-
istically in the full phase space (space, angle, speed, time) (see Reference [9]). The programming
complexity and envisaged large computational demands have not made this approach popular.

At the other modelling extreme are the two-fluid models (TFM) [10,11], whose initial
development was based on the observation that closely packed fluidized particles have
dynamics similar to a low-Reynolds number fluid flow. They thus assume a continuum
description of the fluidized system. Among the first models to be developed were those based
on the analogy with porous media with the use of Darcy Law assumptions [12] (neglecting
inertial terms).

Useful predictions have been made using a two-fluid model with a momentum equation set
for each of the gas- and solid-phases. However, these have often been plagued by uncertainties
in prescribing the isotropic viscosity and normal stress of the solids phase. Various non-
Newtonian models for the internal stresses of the solid-phase have been proposed [11,13].
These stresses were correlated with experimental observations. The resulting uncertainties have
led to the increase in the popularity of the granular temperature model, which is based on an
analogy between the kinetic theory of gases and binary particle–particle collisions [14–19].
This provides a means of calculating the internal stresses for the solid-phase without resorting
to correlations. Works performed in References [20–22] have shown the ability of the two-fluid
granular temperature approach to model numerically the bubbling gas–solid fluidized bed.

The history of the modelling of fluidized beds can be found in Reference [23], details of the
turbulent modelling can be found in References [16,20,22] and the general behaviour of
fluidized beds, including various correlations, can be found in References [3,24,25].

Other important numerical modelling works include Reference [20], in which coupled
turbulent models for both the solid- and gas-phases were used. Kuipers et al. [2] investigated
numerical heat transport within a fluidized bed and, in Reference [21], predicted (from the
granular temperature TFM) velocity fluctuations of particles were compared with experimental
fluctuations, with varying restitution coefficients.
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A large number of codes have the ability to model multi-phase flows (although they may not
be written for solid–gas flows), for example, PHOENICS [26], which uses the SIMPLE based
interphase slip algorithm (ISPN). These types of algorithms seem, to date, to be the most
successful and robust multi-phase solutions. Some other multi-phase codes are CFX, FLU-
ENT, RELAP5 [27], TRAC [28] and CATHARE [29]. The latter seems rather different from
the others, which are project-based algorithms with Pickard iteration. CATHARE uses direct,
frontal solutions of the coupled main variables and Newton iteration.

In this paper we attempt to model gas–solid particle fluidized beds using the two-phase
solution method, assuming both gas- and solid-phases are incompressible. The pressure
differences in the gas-phase are small enough for this assumption to be valid for the examples
presented. A transient mixed finite element formulation is used to discretize the equations. In
addition, a discontinuous finite element (finite volume) discretization of the continuity equa-
tions and field variables and a continuous Petrov–Galerkin [30] discretization of the momen-
tum equations are employed. Within each time step the equations are iterated upon using a
projection-based pressure determination method until all equations balance simultaneously. As
a result, the non-linear continuity equations are strictly satisfied, ensuring mass conservation.

The remainder of the paper is structured as follows: Section 2 presents the governing
equations along with appropriate boundary conditions; Section 3 contains a description of the
discretization and solution method used to solve these equations; Section 4 presents the
numerical results; and conclusions are drawn in Section 5.

2. GOVERNING EQUATIONS AND ASSOCIATED BOUNDARY CONDITIONS

In this section we present the governing equations for the two-fluid numerical model solved
here, along with the associated boundary conditions. Detailed derivation of these equations
can be found in Reference [22] and the boundary conditions in Reference [31]. In the examples
presented and in the numerical description, both phases are assumed incompressible, which is
a reasonable approximation of the adiabatic flows considered in the applications (Section 4).

2.1. Go�erning equations

The continuity equations for phase k, where k=g denotes gas and k=s denotes solid
particles, is

�

�t
(�k�k)+

�

�xi

(�k�k�ki
)=0 (1)

where �k is the density of phase k, �k is the volume fraction of phase k, �k the velocity of phase
k, t is time and xi is the spatial co-ordinate in the ith direction. The corresponding momentum
equation is

�

�t
(�k�k�ki

)+
�

�xj

(�k�k�ki
�kj

)= −�k

�pg

�xi

+�k�kgi+�(�k �i
−�ki

)+
�

�xi

(�kij
) (2)
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where gi is the component of gravity in the ith direction, k � denotes the opposite phase, pg is
the shared pressure and � is the friction coefficient.

In this equation, � is the stress, which for the gas-phase g is

�gij
=2�g�gSgij

(3)

where

Sgij
=

1
2
���gi

�xj

+
��gj

�xi

�
−

1
3

��gk

�xk

(4)

Here, gas-phase turbulence has been neglected because of the considerable uncertainties in
turbulence model closures and the large gas-phase turbulent suppression [22] in the densely
packed beds considered here. Instead, a constant viscosity is used which equals the gas
viscosity in this case but could also be made larger to act as an eddy viscosity. In the solid
phase, the stress is given by

�sij
=
�

−ps+�s�s

��sk

�xk

�
�ij+2�s�sSsij

(5)

where ps is the solid-phase pressure given by

ps=�s�s[1+2(1+e)�sg0]T+ p̂a (6)

T is the granular temperature (associated with kinetic energy of particle motion) and is defined
by 3

2T=1
2C

2, where C2 is the mean square velocity deviation from the average velocity �s of the
solid phase. Equation (6) has been altered from that presented in Reference [22] to include the
term p̂a, which will be defined later. The solid-phase deformation rate is given by

Ssij
=

1
2
���si

�xj

+
��sj

�xi

�
−

1
3

��sk

�xk

(7)

The solid shear viscosity �s is given by

�s=
4
5

�s�sdsg0(1+e)
�T

�

�1/2

(8)

where ds is the diameter of the particles and e is the particle–particle restitution coefficient. In
this equation for �s, and similarly for the equation used to calculate granular conductivity 	,
we have included only the collisional interaction between particles and have ignored the kinetic
contribution, which is relatively small for the densely packed beds considered here. The kinetic
part is dominant for flows with small particle volume fractions and was included in the
formulation of Reference [21].
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The solid-phase bulk viscosity is

�s=
4
3

�s�sdsg0(1+e)
�T

�

�1/2

(9)

Various correlations are reported in the literature for the radial distribution function g0

[17,22,32,33]. Here we use a correlation based on Reference [17] but amended to produce an
improved fit to the results presented in Reference [33]

g0=
3
5
�

1−
��s

��

�1/3n−1

(10)

where �� is the particle volume fraction at maximum packing.
The friction coefficient � is

�=

�
�
�
�
�

150
(�s)2�g

�gd s
2 +1.75

�g�s��g−�s�
ds

, for �s�0.8

3
4

Cd

�g�s�g��g−�s�
ds

�g
−2.65, otherwise

(11)

where for

Rep=
�s�g��g−�s�ds

�g

�1000

the drag coefficient is

Cd=
24

Rep

[1+0.15(Rep)0.687] (12)

and for Rep�1000

Cd=0.44

Here, Rep is the particle Reynolds number.
The fluctuation energy equation is

3
2
��(�s�sT)

�t
+

�

�xj

(�s�s�jT)
�

=�sij

��si

�xj

−
�qj

�xj

−
−3�T (13)

The term −3�T represents the loss of particle kinetic energy to the gas-phase due to
particle–gas drag forces. The corresponding source term due to turbulent velocity fluctuations
of the gas-phase has been ignored. This is a necessity in the absence of a gas-phase turbulence
model and can be justified for heavy large particles [34].
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The collisional energy dissipation 
 is given by


=3(1−e2)(�s)2�sg0T
�4

ds

�T
�

�1/2 ��k

�xk

n
(14)

and the flux of fluctuating energy by

qj= −	
�T
�xj

(15)

with a granular conductivity 	 defined as

	=2�s(�s)2g0ds
�T

�

�1/2

(16)

2.2. Boundary conditions

In order to solve the set of equations obtained for the gas-solids flow, appropriate boundary
conditions for velocity and volume fraction of both phases and the granular temperatures of
the solid-phase are necessary. The volume fraction of gas is set to unity where gas enters the
system. The particles may slip at the wall or bounce off the wall, creating complicated
boundary conditions that will require simplification for use with the TFM.

The boundary conditions for gas- and solid-phases at the walls are: (i) prescribed shear
stress—obtained from the Blasius equation for gas (see Reference [35]) with a length scale
equal to the height of the initial solid occupied domain (approximated with the shear stress
of gas on a plane surface measured at a length equal to this height); (ii) no normal flow; (iii)
prescribed fluctuating energy flux. At the top of the domain all components of the gas (air)
stress tensor are set to zero, allowing the gases to enter and leave the domain unhindered.
Since pressure is the dominant part of the total normal stress component, this in effect sets
the shared pressure level to zero at the top most part of the domain (outlet boundary).
Thus, the atmospheric pressure level must be added to this pressure, where pressure is
needed for compressible flow. No normal flow and zero shear stress conditions are applied
to the solid-phase at the top most boundary, so there is no loss of solid in the simulations.

The boundary conditions applied to the particle-phase can be summarized as follows.
Defining R as [36]

R=
7
2
� 1+e

1+�0

� S
N

where e is the wall restitution coefficient, �0 is the tangential coefficient of restitution at the
wall, N is the normal stress (the solid-phase pressure ps is used here to approximate N) and
S is the shear stress. The shear stress at the wall can be calculated from the following
correlation:

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 91–124



MODELLING GAS–SOLID FLUIDIZED BEDS 97

R=

�
�
�
�
�

3
2

r, 1�r�
2
3

�0

�0,
2
3

�0�r��

where

r=
�wall

(3T)0.5 , �0=
7
2
� 1+e

1+�0

�
�

in which �wall and T are the slip velocity and granular temperature of the particle near the wall
respectively and � is the friction coefficient.

The normalized frictional flux F is defined as

F=
7
2

1+e
1+�0

� Q

N�3T
+

3
8

(1−e)
n

In Reference [36] an expression for F was determined

F=

�
�
�
�
�

3
8

[2(1+�0)r2− (1−�0)], 1�r2�
1
2
�

�0
2+

1−�0

1+�0

n
3
8

(1+�0)�0
2,

1
2
�

�0
2+

1−�0

1+�0

n
�r2��

where Q is the rate at which fluctuation energy is provided to the flow per unit area of the
wall. This provides a convenient expression for Q=q ·n (q is the flux of fluctuating energy,
Equation (15), and n is the normal to the boundary), which is applied in a natural finite
element sense [30].

3. NUMERICAL SOLUTION OF MULTI-PHASE FLOW EQUATIONS

The numerical solution of the equations above involves two steps: in what follows, the
momentum and continuity equations are discretized using a mixed finite element formulation
with a discontinuous representation of the volume fraction fields. Before the momentum
equations are discretized they are first divided by the volume fraction of the corresponding
phase. The resulting coupled equations are then solved using a projection-based method
(Richardson iteration), which is adapted to the multi-phase case.

3.1. Finite element discretization

The momentum equations are discretized implicitly in time using the backward Euler method,
with upwind discretization of the non-linear terms, the magnitude of which is chosen to obtain
the ‘correct’ quantity of dissipation at steady state (see Reference [30] and Section 3.2.3). All
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the resulting mass matrices are lumped to enhance convergence of the solvers. The difficulties
associated with a multi-phase solution will be illustrated here in two-dimensional Cartesian
co-ordinates. Suppose

�� =��g

�s

�
with

�k=
��kx

�ky

�
and p=

�pg

pa

�
the vectors of unknowns associated with velocity and pressure respectively. Suppose �kx

, �k and
pk have finite element expansions �kx

=�j Nj�kxj
, �k=�j Mj�kj

and pk=�j Mjpkj
. Thus, the

vectors �kx
, �k and �k contain

�kx
=

�
�
�
�
�

�kx 1

�kx 2

�kx 3

�

�
�
�
�
�

, �k=

�
�
�
�
�

�k1

�k2

�3

�

�
�
�
�
�

and pg=

�
�
�
�
�

pg1

pg2

pg3

�

�
�
�
�
�

respectively. �kx
, �ky

are the x and y components of velocity of phase k respectively. An
expansion similar to that of �kx

is used for �ky
. The coefficients of this expansion are placed in

the vector of unknowns �ky
. The pressure pa is associated with the solid-phase, but not

necessarily the solid-phase pressure ps, Equation (6).
The granular temperature associated with the solid-phase is approximated with the series

T=�j MjTj. The simulations presented will employ an Mi that is piecewise constant (constant
throughout an element) and an Nj that is the continuous bilinear finite element method (FEM)
basis function—both sets of basis functions with local support. Thus, the role of i and j will
change from here on, so instead of representing the component of velocity and dimension as
they were used previously, they are now used to identify basis functions. A subscript k
continues to indicate the phase, which may be replaced by a ‘g’ for the gas-phase or an ‘s’ to
denote the solid-phase. The time level at which the variables are evaluated is indicated from
here on with a superscript, for example � k

n is the vector of volume fractions of phase k at time
level n. Details of discretization using these basis functions for single phase flow can be found
in Reference [37]. The momentum equation (2), discretized, becomes

A
�n+1

�t
=Cpn+1+Sn+1 (17)
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Matrix A contains implicit coupling terms between the phases as well as implicit discretization
within each phase, and the vector Sn+1, as well as terms involving �n, contains sources and
sinks of momentum, e.g. body forces. Matrix C is defined, for example, as

C=
�Cg 0

Cg Ca

�
, with Cg=

�Cgx

Cgy

�
Matrix Ca will be defined in Section 3.1.2. The values at row i and column j of the matrices
Cgx

and Cgy
are

Cgxij
=
� �Ni

�x
Mj dV and Cgyij

=
� �Ni

�y
Mj dV

respectively. The discretized continuity equations (1) are

M�

�� k
n+1−� k

n

�t
�

+Ck
T(�k

n+1)� k
n+1=0 (18)

with

Ck(�k
n)ij=

�
�
�
�
�

�
e

��
e

�
�k

n �Ni

�x
+

��k
n

�x
Ni
�

Mj dV−
�

e�kx
nx�0

Ninx
eMj(�n−� in

n ) d�
�

�
e

��
e

�
�k

n �Ni

�y
+

��k
n

�y
Ni
�

Mj dV−
�

e�ky
ny�0

Niny
eMj(�n−� in

n ) d�
�

�
�
�
�
�

(19)

The mass matrix M� has entries M�ij
=	 MiMj dV, e denotes the element, � in

n represents the

volume fraction from neighbouring elements,
�nx

e

ny
e

�
is the normal to element e along boundary

� of element e, and 0 represents the vector containing entries of zero only. Summing continuity
Equation (18) over all phases, the overall continuity equation is obtained

�
k

Ck
T(�k

n+1)� k
n+1=0

The terms

��k
n

�x
,

��k
n

�y

in Equation (19) disappear for the constant variation of �k
n throughout an element used here,

but remain for higher-order variations of �k
n within each element. A spatially higher-order
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discretization method can also be realized by replacing � in
n in Equation (19) by an interpo-

lated value of �k
n+1. This would need to be limited to avoid unphysical volume fractions

resulting in a high-resolution method. Similarly, the time stepping given by Equation (18)
can also be extended to a second-order, or higher, method in time.

The consistent manner in which � ·�k�k is discretized in Ck of Equation (18) ensures that
the overall scheme preserves the integral of �k over the solution domain in the absence of
phasic mass exchange and boundary conditions for �k, i.e. inlet values of �k.

3.1.1. Boundaries not aligned with the co-ordinate system. For curved wall boundaries �kin
=

0, �k is the default boundary condition. This ensures that no net solid enters or leaves the
domain at curved boundaries, or any boundaries for that matter, with no normal flow
boundary conditions imposed. This is necessary because there may be an inlet or outlet
velocity component normal to the elements on curved boundaries in which no normal flow
boundary conditions are imposed.

In order to apply specified shear stress boundary conditions at curved boundaries (walls)
or boundaries not aligned with the co-ordinate system, the co-ordinate system is rotated so
that it is aligned with the boundary. No normal flow boundary conditions can be applied
in the rotated system as a velocity component set to zero. For continuity satisfying reasons,
see Reference [38], the normal to the boundaries (centred at node j say) are obtained from
the matrices Cgx

, Cgy
(used to define the discretized continuity equations for single phase

flow), via

nj= (nxj
, nyj

)=
1

n*
��

i

Cgxij
, �

i

Cgyij

�
in which n* normalizes the vector nj. The local rotation matrix at boundary node j is

Rj=
�−nyj

nxj

nxj
nyj

�
Defining the diagonal matrices Dx and Dy to have entries Dxij

=nxj
�ij and Dyij

=nyj
�ij

respectively, the rotation matrix for a single phase can be written as

R=
�−Dy Dx

Dx Dy

�
The two-phase rotation matrix is, therefore

R� =�R 0
0 R

�
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Matrices A, M and C are replaced by their rotated counterparts Ar=R� AR� T, Mr=R� MR� T

and Cr=R� C respectively. All rotation matrices have the property that RTR=I. This definition
of Cr is also valid if the pressure vector p contains only the pressures associated with the gas
pg.

The discretized momentum equation becomes

Ar

� r
n+1

�t
=Crpn+1+S r

n+1

with �r=R� � and Sr=R� S. The appropriate pressure equation can now be obtained by
manipulating the relevant equations, as described in the next section, which includes the
rotated continuity equation

M�

� k
n+1−� k

n+1

�t
+Ck r

T (�k
n+1)� k r

n+1=0

3.1.2. Solid-phase pressure. In References [2,11,13] the modulus of elasticity G was incorpo-
rated into the normal stress (solids added pressure) component with the application of the
chain rule. That is

�ps

�y
=

�ps

��s

��s

�y

with G=�ps/��s, which took on values correlated from experiments, in fact Reference [39]
summarizes 15 different expressions, correlating solid pressure with bulk solid volume fraction.

In this section, the solid-phase pressure defined by Equation (6) will be used. It is important
when the volume fraction of the solid-phase approaches its maximum to treat this pressure
implicitly or partially implicitly because the acoustic wave speed of the solid-phase then
approaches infinity (this phase becomes incompressible). An explicit pressure treatment is
numerically unstable for incompressible flow. With an implicit treatment of solid-phase
pressure, propagating solid-phase pressure waves need to be resolved to achieve numerical
stability.

Suppose the equation for solid-phase pressure is

�s=Lsps (21)

which is also the equation of state for the solid-phase, see References [32,33]. The function Ls

used here is

Ls=
1

�s(1+2(1+e)�sg0)T+ p̂a/�s

(22)

If Equation (21) is used in the discretized continuity equation (18), then the continuity
equation (18) becomes
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1
�t

H s
n+1p s

n+1+Cs
T(� s

n+1)� s
n+1=h s

n (23)

with the matrix H s
n having components H sij

n =	 MiL s
nMj dV, h s

n= (1/�t)H s
np s

n and the super-
script n in L s

n indicates that all components of Ls, given by Equation (22), are evaluated at time
level n. Equation (23) is non-linear and thus an iteration level l must be introduced. Equation
(23) then becomes

1
�t

H s l
n+1p s l

n+1+Cs
T(� s l

n+1)� s l+1
n+1 =h s

n (24)

The volume fractions can be calculated from

M�

� s l+1
n+1 −� s

n

�t
+Cs

T(� s l+1
n+1 )� s l+1

n+1 =0 (25)

to obtain the new volume fraction � s l+1
n+1 for iteration l+1. This is the implicit version that

ensures the volume fractions lie within their physically permitted limits of [0, 1]. It also
propagates the new �k l+1

n+1 quickly across the mesh. However, explicit treatment of Equation
(25) realized by replacing Ck

T(�k l+1
n+1 ) with Ck

T(�k l
n+1) in Equation (25) ensures that �k �k l

n+1=1
when Equation (25) is solved for both phases, because the global continuity equation
�k Ck

T(�k l
n+1)�k l+1

n+1 =0 is satisfied. For additional stability, Equation (25) is treated implicitly
and solved using GMRES [40]. In any event, at convergence of the non-linear method the
same continuity equation (25) is satisfied, so that the three conditions

�
k

�k=1,
�

�k dV=constant, �k, �k� [0, 1], �k (26)

are enforced.
The discretized version of the continuity equation is also non-linear in �k, because �k defines

the incoming directions, to an element, used in the definition of Ck
T(�k

n) given by Equation (19).
The latest available velocities are generally used to calculate the element incoming directions.
However, we have found that stability is improved if the inlet boundaries for each element
(associated with incoming fluid) are re-determined only when the volume fractions are
updated.

Potential problems with the definition of Ls, Equation (22), as T�0, are avoided by
introduction of p̂a, which depends on the volume fraction only. The term p̂a in Equation (22)
is used to keep the particles apart as the maximum packing is approached. The aim is to obtain
a ps that will take on a representative pressure resulting from the particles in the bed that are
in continuous contact (contact other than binary collisions). In a collapsed fluidized bed with
no fluidized gas pumping through it, ps takes on the hydrostatic pressure resulting from the
weight of particles (neglecting gas weight).
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Suppose p̂a can be represented by the ad hoc equation

p̂a=�s� s
3g �0F

and thus L� ap̂a=�s, with

L� a=
1

�s� s
2g �0F

and g �0=
�

1−
��s

� ��

�1/3�−1

Others have introduced similar pressures usually based on a power law [41]. In our work F has
been chosen based on dimensional arguments to be F=F0gd for some numerically tuned F0 (F0

is of order 1, in fact F0=1 is used). However, F0 can be chosen to produce strictly real
characteristics when the granular temperature is zero, see Reference [42] for example. Numer-
ical experiments have demonstrated that there may be some benefit in choosing the maximum
packing factor � �� in g �0 of the equation for p̂a to be slightly lower than �� used in g0, say by
2 per cent. For solid spheres with no gas drag forces, buoyancy and solid-phase pressure
balances lead to the equation for volume fraction of the solid

�s=� ��
�

1−
d
h

� s
2�3

in which h is the depth below the collapsed bed surface and d is the diameter of the solid
particles. Figure 1 shows the variation of the volume fraction with dimensionless depth h/d

Figure 1. Normalized volume fraction of solid particles �s/��� (with ��� =0.62) against depth h below the
collapsed bed surface divided by the diameter of the particles d.
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below the surface. For numerical convenience, another parameter, pa, is introduced and
defined as

pa=
�s

1−
��s

� ��

�1/3

with p̂a=�sF� s
2pa. The pressure term �p̂a that appears on substituting ps from Equation (21)

into the solid-phase momentum equation (2) then becomes

�p̂a=F(�s��spa�s+�spa�s��s)

On dividing this term by �s, then discretizing, one obtains

�
NiF(��spa�s+pa�s��s) dV=

�
(− (�Ni)F�s�spa+NiF(��s)�spa) dV+

�
nNiF�s�spa d�

=Capa (27)

This equation acts as a definition of the matrix Ca. To obtain the gradients ��s/�x, etc., in this
equation, first values of the solid volume fraction at the nodes are calculated using an element
average of �s. This is then used with the weighting functions Nj, � nodes j, to obtain the
gradients. The boundary condition �pa/�n=0 is applied by feeding the volume-derived value
of pa into the surface integral above.

The term pa which has been added to the solid-phase pressure ps can be treated quite
differently in the numerical scheme from the temperature-dependent term. In this work an
implicit equation for the pressure term pa is solved.

Now

�s=
�

1−
��s

� ��

�1/3�
pa=Lapa

and this definition of La= (1− (�s/� ��)1/3) is used to obtain Ha in the continuity equation (24),
which becomes

1
�t

Ha l
n+1p a l

n+1+Cs
T(� s l

n+1)� s l+1
n+1 =h a

n (28)

with the matrix Ha
n having components Haij

n =	 MiLa
nMj dV and h a

n= (1/�t)Ha
np a

n. Using an
analogy with density of single-phase fluid and �s=�s(ps, T), the speed of sound cs in the
solid-phase can be calculated using the chain rule

��s

�t
=

��s

�ps

�ps

�t
+

��s

�T
�T
�t
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with

1
c s

2=�s

��s

�ps

and so differentiating Equation (21)

c s
2=T



1+

3
5

(1+e)
w(�s���)

�
2�sw(�s���)+

� s
2

3��
��s

��

�2/3

�

+

dsg
w(�s�� ��)2

�
3� s

2w(�s�� ��)+
� s

3

3��
��s

��

�2/3

�
with

w(�s�� ��)=1−
��s

� ��

�1/3

It can be seen from this equation that as the volume fraction of the solid-phase approaches its
maximum (� �� or ��), the acoustic wave speed cs of the solid-phase approaches infinity.

When solving for the pressure pa implicitly, the unknowns associated with pa gathered
together in the vector pa must appear as part of the solution vector in the matrix equation and
thus the vector of pressures p becomes

p=
�pg

pa

�
3.2. Resolution of the multi-phase equations

We employ a projection-based solution method to solve the discretized coupled equations. The
general form of the method is presented next, followed by its extension to the case of
multi-phase flows.

3.2.1. The projection method. Suppose that the discretized momentum and continuity equations
are

�
�
�
�
�

1
�t

A −C

−CT −
1
�t

H

�
�
�
�
�

��n+1

pn+1

�
=
�Sn+1

hn+1

�
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A velocity field can be found that satisfies the discretized continuity equation exactly during
any stage of an iterative process. Alternatively, if an implicit uncoupled non-iterative method
is used to solve the discretized momentum equations, the resulting velocity field ��

n+1 will need
some amendment in order to satisfy the discretized continuity equation exactly.

Suppose the discretized momentum equations that were solved to obtain ��
n+1 are

M
��

n+1

�t
=Cp�

n+1+Sn+1 (29)

This has a pressure field p�
n+1 that might not ensure continuity satisfaction. The pressure pn+1

and velocity �n+1 satisfy both the momentum equations

M
�n+1

�t
=Cpn+1+Sn+1 (30)

and the continuity equations

1
�t

Hpn+1+CT�n+1=hn+1 (31)

where

hn+1=
1
�t

Hpn

It is computationally convenient to solve for pressure correction. A pressure correction
equation can be obtained by first subtracting Equation (29) from Equation (30) to obtain

M
��� n+1−��

n+1

�t
�

=C�p (32)

where �p=pn+1−p�
n+1.

Equation (32) is a spatial discretization version of

�n+1−��
n+1

�t
= −��p

Thus it is apparent that �×�n+1=�×��
n+1, i.e. vorticity is unchanged.

Now, pre-multiplying Equation (32) by CTM−1 and using Equation (31), the familiar
pressure correction equation is obtained

−
1
�t

Hp�
n+1+hn+1−CT��

n+1

�t
=
�
CTM−1C+

1
�t2 H

�
�p (33)
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This equation is solved for �p, which is then placed into Equation (32) to obtain �n+1 via

�n+1=��
n+1+�tM−1C�p (34)

The resulting �n+1 by construction satisfies the discretized continuity equation (31), indepen-
dent of the discretization of the momentum equations. In a practical application of the
projection method, the momentum equation can be treated implicitly with a guessed value of
pressure from the previous iteration, that is

A
��

n+1

�t
=Cp�

n+1+Sn+1 (35)

Continuity correcting algorithms such as this can be incorporated into iterative algorithms,
such as those presented. An example of its usefulness is illustrated by the popular SIMPLER
algorithm, which uses the method at the end of each iteration cycle [55].

3.2.2. Multi-phase solution method. In this subsection a pressure matrix will be obtained by the
same procedure that was used to obtain Equation (33). However, the pressure matrix for the
FEM is not symmetric-positive-definite, except in the one-dimensional case, with phase
coupling treated explicitly in pressure, in which case it is equivalent to the donor cell approach.
A symmetric-positive-definite matrix equation is solved in order to help obtain a solution to
the discretized momentum equation (17) and continuity equations (18). These equations
combined in matrix form are presented in Equation (36) below. The approximation is obtained
with the aid of a second conservative discretization of this equation (see next subsection). The
discretized momentum and continuity equations are

�
�
�
�
�

1
�t

A −C

−CT −
1
�t

H

�
�
�
�
�

��

p
�

=

�
�
�
�
�
�
�
�
�
�
�

1
�t

Agg

1
�t

Ags −Cg 0

1
�t

Asg

1
�t

Ass −Cg −Ca

−Cg
T −Cs

T 0 0

0 −Cs
T 0 −

1
�t

Ha

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�g

�s

pg

pa

�
�
�
�
�

=

�
�
�
�
�

sg

ss

hg

ha

�
�
�
�
�

(36)

Its approximation double is
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�
�
�
�
�

1
�t

M −C

−CT −
1
�t

H

�
�
�
�
�

��

p
�

=

�
�
�
�
�
�
�
�
�
�
�

1
�t

Mgg

1
�t

Mgs −Cg 0

1
�t

Msg

1
�t

Mss −Cg −Ca

−Cg
T −Cs

T 0 0

0 −Cs
T 0 −

1
�t

Ha

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�g

�s

pg

pa

�
�
�
�
�

=

�
�
�
�
�

sg

ss

hg

ha

�
�
�
�
�

(37)

where Cs is defined by Equation (27), Mmn is an approximation to the matrix Amn. This is a
particularly good approximation when the mass matrices contained within Amn are all lumped,
which they are in the examples presented. Mmn contains all the mass matrices in Amn, lumped
so that it is block diagonal, so in two dimensions Mmn contains two non-zeros per row and in
three dimensions, three non-zeros per row. Matrix M contains all the coupling terms between
the phases and thus these terms are treated fully implicitly.

The inverse of

M=
�Mgg Mgs

Msg Mss

�
i.e. D=M−1, has the same (sparse) sparcity pattern as M due to the block structure of M.
Thus, the velocities can be eliminated from the approximation double, forming a matrix
equation for pressure, with a matrix

B=CTM−1C+
1

�t2 H=
�Cg

T Cs
T

0 Cs
T

��Dgg Dgs

Dsg Dss

��Cg 0
Cg Ca

�
+

�
�
�
�
�

0 0

0
1

�t2 Ha

�
�
�
�
�

(38)

This now forms our pressure matrix. An approximation B� to B that is symmetric/positive
definite is formed and is used to precondition the solution of the matrix equations involving
B. To this end, suppose D� k= f� kM� kk

−1 in which M� kk
−1 is a further approximation to Mkk

−1. In this
work we use a diagonal approximation obtained by ignoring off-diagonal entries in Mkk (see
Section 3.2.3 for the motivation of this definition of D� i). In order to define f� k, a diagonal
matrix fk is first defined with diagonal entries corresponding to a nodewise approximation of
the volume fractions �k (see next section for methods of calculating fki

). More specifically, fk

is defined by its entries

fkij
=�ij fki

and f� k=
�fk 0

0 fk

�
(39)
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We have also experimented with lumping Mij via row sum to obtain a diagonal approximation
D� k

−1. The off-diagonal entries in Mij are usually negative (because they are dominated by drag
forces); this reduces the size of the positive value in the diagonal approximation of Mkk.
However, simply taking the diagonal entries corresponds to a relaxation scheme and results in
a more stable and quickly converging pre-conditioner and overall solution. The diagonal
matrix Dk is defined by its coefficients

(Dk)ij= fki
((Mkk)ij�ij)−1 and so D� k=

�Dk 0
0 Dk

�
and D� =

�D� g 0
0 D� s

�
(40)

The preconditioner for solution of matrix equations involving matrix B thus becomes

B� =�Cg
T Cg

T

0 Cg
T

��D� g 0
0 D� g

��Cg 0
Cg Cg

�
+

�
�
�
�
�

0 0

0
1

�t2 Ha

�
�
�
�
�

(41)

The iterative solution of matrix equations involving matrix B is an Arnoldi iteration [43] in
which a number of orthogonal vectors are maintained. The only difference between this and
FGMRES [40] is that there is the potential to add any orthogonalized vector in the least
squares process, and then to discard when the number of spanning vectors reaches a specified
maximum any one of the other spanning vectors. We have experimented with a number of
ways of discarding vectors. The best seems to be to discard vectors that have contributed most
to the current solution. This is thought to be because when these vectors are discarded other
new vectors can be formed that have a similar direction in the search space, which is not the
case when these vectors are retained.

The crucial point is that the Arnoldi iteration allows the preconditioning matrix to be
different at each iteration, which means that there is no need to solve the matrix equation
involving the pre-conditioner to great accuracy—it just needs to be solved to a better accuracy
than the current accuracy of the solution in the Arnoldi iteration. Block SSOR preconditioning
[43] is used to precondition conjugate gradient iterations. These block matrices are 2×2
because the pressures ps and pa are calculated simultaneously. Twenty orthogonal vectors are
maintained in the examples presented and these are simply obtained from the Krylov subspace.
After 20 iterations the whole process is restarted in much the same way as FGMRES.

It is worth mentioning that instead of using a projection method to solve the coupled
discretized momentum and continuity equations, one could again apply Arnoldi iteration to
the solution of the pressure equation with the matrix

B=
�Cg

T Cs
T

0 Cs
T

�
A−1�Cg 0

Cg Cg

�
+

�
�
�
�
�

0 0

0
1

�t2 Ha

�
�
�
�
�
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which is obtained by eliminating the velocities from Equation (36) to obtain an equation for
pressure. matrix B, Equation (38), above would then be used as a pre-conditioner. To form the
matrix vector multiplications involving B, a matrix equation involving A would then need to
be solved. In addition, the continuity equation is non-linear so one still needs to iterate around
this. However, the projection method approach used here provides a convenient means of
doing this (combining linear and non-linear iterations) as the linearized, phase combined,
continuity equation (20) is satisfied at the end of each iteration. However, to increase the
robustness of the scheme it has been found necessary to introduce a third tolerance; so that
only when the discretized continuity and discretized linearized momentum equations have
converged to within this tolerance, are the volume fractions updated via Equation (25).

There is a second non-linear solver that is wrapped around the solution method described
above. This iterates the non-linear terms in the momentum equations to convergence. When
this outer iteration is allowed to convergence, a single inner non-linear iteration can be used,
which in effect converges the inner iteration. The minimum requirement is that the non-linear
continuity equations (25) are strictly satisfied, and therefore constraints (26) are enforced.

An explicit treatment of the solid-phase pressure can be used in the above formulation so
that the pressures pa do not appear in the matrix equation above, then the matrices CT and C
become

C= (Cg
T, Cs

T) and C=
�Cg

Cg

�
and Ha=0

and the pressure vector p becomes p=pg. At the other extreme, all the terms in the solid-phase
pressure can be treated implicitly, so the continuity equations (28) are replaced by Equation

(23), i.e. Hs replaces Ha in the above. The pressure vector p then becomes
�pg

ps

�
.

3.2.3. Second discretization method. To form a second discretization that will be used to help
solve the equations above, the volume fraction �k at each node i, fki

are first obtained. It can
be important to obtain a fk field that is representative of �k as this will speed up the
convergence of the pressure solver. The values fki

at each node i can then be employed to
obtain a discretization of the term � ·�k�k and is used to define f� in Equation (39).

Upwind calculated volume fractions fk, �i combined to form a vector fk, that are represen-
tative of �k at the velocity nodes are obtained by solving the equation

Nkfk=Lk�k (42)

fk=�j Nj fkj
is a continuous function of space whereas �k need not be continuous. In which

case

Nkij
=
�

(Ni+ ��J−1�k ���−1�k ·�Ni)Nj dV

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 91–124



MODELLING GAS–SOLID FLUIDIZED BEDS 111

and

Lkij
=
�

(Ni+ ��J−1�k ���−1�k ·�Ni)Mj dV

where J is the Jacobian of the distorted finite element system. In the one-dimensional case

��J−1�k ���−1=
he

2��k �

in which he is the characteristic element length of linear Ni, �i. The infinity norm is used in the
above equation, e.g.

�
�
�
��1

�2

��
�
��

=max(�a1�, �a2�)

Boundary conditions on the volume fraction fields are applied to Equation (42) to ensure that
fk satisfy these.

Equation (42) ensures that 	 fk dV=	 �k dV in absence of boundary conditions because the
sum of the weighting functions (Ni+ ��J−1�k ���−1�k ·�Ni) is unity. However, solving Equation
(42) for fki

, �i does not ensure that fki
� [0, 1], �i. Note that fk need not be conserved in order

that �k is conserved in the solution of the continuity equation (18). Thus, fki
is simply rounded

up or down to satisfy fki
� [0, 1]. This ensures positive-definiteness of the resulting pressure

matrix, Equation (41), in the lumped scheme. Solution of Equation (42) does not ensure
�k fki

=1 at each node i. This is for the same reason not important. However, a certain limiting
case can produce fki

=0, �k (this situation can also occur with the donor cell approach [44]).
Thus an additional ad-hoc modification to fki

is made to ensure �k fki
, �i reaches a minimum

value (e.g. 0.1). This is achieved by adding the deficit into the volume fraction fli
in which ‘l’

is the lightest phase.
A discretization of the term � ·�k�k is Cg

Tf� k�k. The discretized continuity equation then
becomes

M�

�� k
n+1−� k

n

�t
�

+Cg
Tf� k

n+1� k
n+1=0 (43)

The resulting �k is conserved because the sum (integral over the domain) of all the entries in
the vector Cg

Tf� k�k is zero. However, �k can become negative, so this equation is used only to
help accelerate the convergence of the linear iteration, i.e. the construction of the pre-condi-
tioner B� in Equation (41).

3.3. Granular temperature solution

The discretization of the advection terms of the granular temperature equation is the same
as for the continuity equation (18). Discretization of the diffusion term in the granular
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temperature equation is achieved on a five-point stencil. The resulting discretized temperature
equation for T is solved using GMRES with FBGS pre-conditioning and 20 iterations before
restarting GMRES.

However, it has been found desirable to introduce a non-linear Pickard iteration over the
temperature equation, which allows the non-linear terms in T to be represented more
accurately. The resulting temperature T is then used in the discretization of the momentum and
continuity equations (36). A maximum of three of these iterations is used. This is one example
of ‘inner’ non-linear iterations used to take the burden off the ‘outer’ non-linear iterations over
the entire time step. This ploy results in a considerably more stable scheme, allowing larger
time steps to be used.

3.4. Summary of the solution procedure

In summary, the solution of the multi-phase equations within a time step is as follows:

Outer iteration within a time step:

1. Solve the non-linear granular temperature equations using �k, �k ; �k, �k and T from the
previous iteration or time level (if it is the first iteration of current time level).

2. Using latest temperature and volume fractions calculate the solid-phase pressure ps and
viscosities �s and �s.

3. Calculate discretized momentum equations, in Equation (36).
Non-linear inner iteration:

4. Calculate discretized continuity equations, in Equation (36).
5. Using matrix A of Equation (36), solve Equation (35) for the velocities ��

n+1, using the
pressures p�

n+1 from the previous iteration, or time level if it is the first iteration.
6. Solve pressure equation (33) for pressure correction.
7. Put pressure correction into pressure and solve the velocity correction equation (34) to

obtain the velocity field.
8. Solve the continuity equations (25) for volume fractions.
9. If pressure/velocity/volume fractions have not converged go to (4), else go to (10).

10. If all fields have not converged go to (1) above to obtain improved approximations to
non-linear drag, momentum terms, etc., else advance the time level and repeat the whole
process.

We have chosen to use Pickard iteration for all non-linear iterations because it has a
relatively large radius of convergence, compared with, say, Newton–Raphson-based methods,
although some combination of the two methods would perhaps be most efficient.

4. NUMERICAL SIMULATIONS

The numerical modelling described in the previous sections will now be applied to two case
studies. In both cases, the gas (air) at room temperature enters from the bottom of the reactor
and exits from the top, while the solid-phase (spherical particles) circulates inside the bed.
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In this section also, the results of the simulations are compared for cylindrical and Cartesian
co-ordinates and the effect of breaking the symmetry, in Cartesian co-ordinates, on the solutions
has been investigated.

In order to show the results of the simulations, throughout this work a number of graphs
and pictures have been provided. However, to grasp more information about the dynamical
behaviour of the fluidized beds studied here, a number of animations are available on the
Internet (these can be found at http://amcg.th.ic.ac.uk/multiphase).

4.1. Case study 1: simulation of a fluidized bed reactor in a bubbling regime

The experimental configuration used is described in Reference [45]. It consists of a cylindrical
column, 13.8 cm in diameter, that is filled with glass beads with diameters in the range
0.042–0.06 cm. The cylinder is filled to a height of 11.3 cm (static bed height). In the simulations
of these experiments, a particle diameter of 0.05 cm and particle density of 2.5 g cm−3 have been
used. The inlet superficial velocity of air at room temperature is 64.1 cm s−1, 18 per cent of
the terminal velocity. A time step of 0.2×10−3 s has been adopted for the computations.

A uniformly spaced grid is used in the streamwise direction, while in the cross-streamwise
direction an exponential grid is adopted to increase the numerical resolution near the walls.

For this simulation, a 13×20 grid has been used, where the first and second numbers are
the number of uniformly spaced elements in the radial (cross-streamwise) and axial directions
respectively. The simulation took approximately 1 h of CPU on a Dec Alpha(ev5) 500 in single
precision, to reach 10 s.

Based on particle size and density difference between particles and air, the solid-phase can
be classified as Geldart B powder, see Reference [3]. For this group of powders, bubbling starts
at minimum fluidization [1]. Using the second form of the Thonglimp [46] correlation for
gas–solid fluidized beds, the minimum fluidization velocity was calculated to be 19 cm s−1.

The mean velocities over time have been calculated to assess the time averaged behaviour.
In the upper parts of the reactor that are seldom visited by particles, the velocity of the
solid-phase is that of the free falling particles, which can reach terminal velocity if the reactor
is tall enough. This information is of little use to us, and so when the averaged volume fraction
is less than 0.05 we have not drawn the averaged velocity vectors in the plot of the solid flow
patterns in this fluidized bed (Figure 2(a)). In addition, where the average volume fraction is
small (just above 0.05) and in the splash zone, the average velocity will still be dominated by
the falling particles, as seen in Figure 2(a). In the main body of the reactor the results of the
simulations (Figure 2(a)) show that particles generally ascend at the centre and descend near
the wall. This behaviour is consistent with the results of experiments [45] and is shown in Figure
2(b). This comparison suggests that the qualitative behaviour of the simulation agrees well with
that of the experiment. The stable height of the bed in the experiment appears to be higher at
about 21 cm, see Reference [45] and Figure 2(b), than that of the simulation, which is about
18 cm (Figure 3(a)). Possible reasons for this are: inaccuracy of Ergun’s equation (for drag);
three-dimensionality of flow; inadequacy of two-fluid model; the experimental coefficients used
in the calculations, such as the restitution coefficient of glass beads, the maximum packing
factor, the wall restitution coefficient and the friction coefficient of the wall. A restitution
coefficient of 0.995 was used in the calculations. While Reference [21] reports that when a
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Figure 2. (a) Time-averaged velocity vectors of the particles, calculated by the simulations in the
cylindrical co-ordinates. (b) The velocity vectors obtained from experiment (case study 1).

restitution coefficient of 0.995 has been used in their calculations, the results are closer to the
experimental results; Reference [47] reports a restitution coefficient of 0.9 for the glass beads.
A wall restitution coefficient of 0.75, a friction factor of 0.2 and a maximum packing factor of
0.62 are used for the calculations. Preliminary investigations have shown that the flow is especially
sensitive to the friction factor used.

Figure 3 shows the average computed volume fraction of particles, which indicates that, in
the time average sense, the particles have higher concentration near the wall than the centre of
the bed. The computed average granular temperature of the particles is also shown in Figure
3 and indicates that, in the time average sense, the granular temperature of the bed is higher
near the top than the other parts of the bed.

As a result of impulsive initialization, a large pressure gradient is formed at the beginning
of the simulation. This forms a large bubble, which moves upwards and is released into the free
board of the fluidized bed. After the release of the first large bubble, whose radius is comparable
with the diameter of the fluidized bed, new small bubbles form near the bottom of the bed and
rise towards the free surface. In general, the bed operates in a bubbling regime.

A variation of void fraction with time at different sample points has been analysed and indicates
that the amplitude of the oscillation of the void fractions in the centre of the bed at z=5.6 cm
and z=11.3 cm are larger than that at the corresponding heights near the wall, at r=5.155
cm. The results also show a larger amplitude of oscillations at sample points at z=11.3 cm relative
to z=5.6 cm, indicating that the voids grow as they approach the surface of the bed.
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Figure 3. (a) Time-averaged volume fraction of particles. On average, particles have higher concentra-
tions near the walls than near the centre. (b) Time-averaged granular temperature. The granular
temperature near the top of the bed is higher than the granular temperature in other regions of the bed

(case study 1).

Fourier transform (using a time series consisting of 32768 points taken from the last 32768
time steps of the 10-s simulation) has been used to calculate the power spectrum of void
fractions at different sample points. A dominant frequency of about 4.3 Hz can be observed
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at all the sample points. The frequency of oscillations at the centre and near the wall appears
to be the same for the same heights. Comparing the frequencies at different heights indicates
that while at z=5.6 cm the only frequencies are at 4.3 Hz and its integer multiples, at z=11.3
cm, beside the frequency of 4.3 Hz, other peaks also coexist.

A fine 40×40 mesh was used to check mesh convergence. This simulation took approxi-
mately 10 h of CPU on a Dec Alpha(ev5) 500 in single precision to reach 10 s. The
time-averaged results were similar to the coarser mesh results, but the peaks of the power
spectrum are shifted to the right. In this case, peaks show a dominant frequency at 5.3 Hz and
its integer multiples. This behaviour (shifting the peaks to the right) indicates that as the
number of elements increases (or the element size decreases) the variation of void faction is
progressively better resolved. The calculated frequencies are consistent with those obtained in
the associated experiment [45], in which dominant frequencies in the range of about 3.8–5 Hz
were reported. Bubble sizes with diameters of 3 cm were observed frequently in the simulation,
which grew as they rose to reach and burst through the free surface. The correlations of bubble
size for group B particles of Darton and Werther both predict bubble sizes of the order of 5
cm with a porous distributor plate, see Reference [25]. This discrepancy in simulated and
correlated bubble sizes are believed to be due to the fact that the simulated bubbles were
toroidal in shape because of the cylindrical co-ordinates used in the simulation, whereas
three-dimensional bubbles are roughly spherical.

4.2. Case study 2: simulation of a fluidized bed in a slugging regime

The experimental apparatus operating in the Delft University of Technology [48] has been used
to provide data to check the validity of the model. It consists of a 4-m cylindrical column with
a diameter of 38.2 cm, while the solid polystyrene particles have a density of 1102 g cm−3 and
a diameter of 1.899 mm. The gas-phase is air at room temperature with a superficial velocity
of 280 cm s−1, 43 per cent of the terminal velocity. The static bed height is 51 cm. A maximum
packing factor of 57 per cent is used in the simulations. A finite element mesh consisting of
20×60 elements and a time step of 2×10−4 s were employed in the simulations. The elements
are uniformly spaced in the x- and y-directions. A 2-m high domain used for the simulation
proved to be adequate to minimize the effect of the imposed outlet boundary conditions on the
main flow. The simulations with this mesh took approximately 4 h of CPU on a Dec
Alpha(ev5) 500 in single precision to reach 15 s. Based on the particle size and density
difference between particles and air, the solid-phase can be classified as Geldart D powder [24].
Using the second form of the Thonglip [46] correlation, the minimum fluidization velocity was
calculated to be 62 cm s−1, 22 per cent of the gas inlet velocity.

To simulate this problem initially, axisymmetric cylindrical co-ordinates were used. The
results showed that due to the highly three-dimensional nature of the problem, two-
dimensional cylindrical co-ordinates can not capture all aspects of the flow, and in some cases
the results are not correct. For example, they lead to a high concentration of particles at the
centre and top of the cylinder (Figure 4(a)), which is not consistent with the results of the
experiment [48]. To treat this problem, since a three-dimensional simulation of the flow is very
expensive and time-consuming, the simulation was performed in two-dimensional Cartesian
(x–y) co-ordinates.
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Figure 4. Comparison between the time-averaged distribution of volume fraction of particles for (a)
axisymmetric cylindrical and (b) Cartesian co-ordinates. Calculations in cylindrical co-ordinates result in
a high concentration of particles in the central region of the reactor, while in Cartesian co-ordinates,
when the symmetry is broken, a low volume fraction of particles appears in the central region; (c)
time-averaged granular temperature of particles; (d) time-averaged velocity vectors of particles. In the
time-averaged sense, the particles move upwards near the centre and fall down close to the walls. The

magnitude of maximum velocity in this graph is 233 cm s−1 (case study 2).

To overcome the problem of having a high concentration of particles in the centre of the
bed, symmetry was initially broken by changing the direction of the gravity up to 1 per cent
for a short period of time (1 s). Results are time-averaged over 15 s of the simulations.
However, as shown in Figure 4(b), the time-averaged results are symmetric (particles fall down
near the wall and rise in the central region). This figure shows the time-averaged volume
fraction of solid particles inside the reactor and indicates a high voidage in the central region
and a high volume fraction of particles near the wall. This behaviour is reported in many
experiments. Gajdos et al. [49] and Qin et al. [50] appear to have been the first to present radial
voidage profiles showing high voidage in the centre and much lower voidage close to the wall
[3]. The time-averaged granular temperature of particles is shown in Figure 4(c) and indicates
a high temperature at the top and near the walls of the reactor. This is due to the higher shear
stress in these regions. Figure 4(d) shows the average velocity vectors of the particles and
indicates that, in the time average sense, particles move upward at the centre of the bed and
fall down near the wall, a phenomena that is consistent with the reported experiment [48]
which states that ‘bubbles are moving upward in the centre of the zone and particles are falling
along the bed wall’. Comparison between experimental results and the simulations shows that
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Figure 5. Comparison between results of simulations (a), indicating the distriburion of void fraction at
various heightd of the reactor, with that of experiments (b) (case study 2).

while the radial distribution of the void fractions in the simulations are qualitatively close to
that of the experiments, axial distributions are different (Figure 5).

Figure 6 shows a time series of volume fraction inside the reactor along with the correspond-
ing auto-power spectra. The large amplitude of the oscillations indicates that the bubbles are

Figure 6. (a) Variation of volume fraction of particles as a function of time; (b) auto-power spectrum of
(a) (case study 2—Cartesian co-ordinates).
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passing through these positions. To gain some information from these figures, power spectra
of the fluctuations of the volume fraction of the particles are calculated, see Figure 6(b) for
example. The results at various sample points throughout the bed indicate that different
positions of the bed oscillate with different dominant frequencies, ranging from 0.7 to 1.4 Hz.
This is consistent with Reference [48] which reports ‘The auto power spectral density of gamma
signal was calculated in order to study the frequency distribution of gas fraction fluctuations.
A dominant frequency band of 1–1.5 Hz appeared in the spectra, both for central and
periphery measurements at all axial positions.’

4.2.1. Simulated physics described. Bubbles are subject to elongation when rising along vertical
tubes [51] or during interaction. Figure 7(a) and (b) shows the elongation of a bubble along the
central axes of the bed. The effect of the walls on changing the direction of motion of the

Figure 7. Volume fraction of solid particles at various instances in time showing: (a) and (b) elongation
of a bubble; (c) and (d) coalescence as it rises along the central axis of the reactor (case study 2).
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bubble is clearly illustrated in this figure. The corresponding velocity vectors of the spherical
particles and gas are shown in Figures 8 and 9(a) and (b) respectively. Two counter-rotating
vortices behind the large bubble at time t=6.2 s can be observed in the velocity vectors of the
particles. The flow of particles in this case is quite similar to flow of a fluid past a bluff body.
It can be seen from the velocity vectors of the gas-phase that gas enters from the base of the
bubble and exits out of the top.

Coalescence of bubbles has been studied by many workers. Assuming two bubbles centred
on a common vertical line rise vertically, Clift and Grace [52] explain that the lower bubble
accelerates under the influence of the leader so that coalescence occurs when the lower bubble
catches up with the upper bubble. Toei et al. [53] explain that for bubbles not in vertical
alignment, the lower bubble moves towards the line of rise of the upper bubble, subsequently
accelerating vertically to enter its wake, so that coalescence typically occurs with the bubble
alignment almost vertical (Figure 7(c) and (d)). However, Cranfield et al. [54] explain that

Figure 8. Velocity vectors of the particle-phase at different times indicating: (a) maximum velocity=343
cm s−1; (b) when a bubble elongates—two couter-rotating vortices can be observed below the bubble—
maximum velocity=299 cm s−1; (c) maximum velocity=386 cm s−1; (d) the bubbles are coalescing—

maximum velocity=312 cm s−1 (case study 2).
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Figure 9. Velocity vectors of the gas-phase at different times indicating: (a) maximum velocity=1130
cm s−1; (b) when a bubble elongates—maximum velocity=1190 cm s−1; (c) maximum velocity=1000

cm s−1; (d) the bubbles coalescing—maximum velocity=930 cm s−1 (case study 2).

‘Coalescence in group D beds is much less understood: qualitatively, bubbles appear to grow
by absorbing gas from neighbouring bubbles rather than as a result of relative bubble motion.’

Figure 7(c) and (d) shows the process of coalescence of bubbles. A bubble created near the
bottom and corner of the bed at about t=7.4 s has moved towards the centre and the line of
rise of the upper, by t=7.5 s. At t=7.6 s (Figure 7(c)), the bubble in the centre has entered
into the wake of the upper bubble, and at t=7.7 s (Figure 7(d)) the bubbles have coalesced.
This is consistent with the explanation of Clift and Grace [52] about coalescence of bubbles.
As a result of coalescence of bubbles near the top of the bed, the size of the bubbles near the
top are larger than that of those near the bottom of the bed. Since at the top of the bed the
size of the bubble is comparable with the diameter of the reactor, this fluidized bed mainly
operates in the slugging regime. Figure 8(c) and (d) illustrates the corresponding velocity
vectors of the spherical particles. Velocity vectors of the gas-phase are shown in Figure 9(c)
and (d). A phenomenon that can be observed in the velocity vectors of the gas-phase is that
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the gas flows into the base of the bubble and out of the top, a behaviour that is characteristic
of group D of Geldart powders. In this group for large particle systems, all but the largest
bubbles travel slower than the interstitial gas and the gas short-circuits the bed by entering the
bottom of a bubble and leaving the top [24].

As a bubble approaches the upper free surface of a fluidized bed, a dome is seen to rise in
advance of the bubble (Figure 7(b)). A mantle of solids separating the top of the dome from
the roof of the bubble thins, until the bubble breaks through [52]. Since relatively large bubbles
burst through the bed surface periodically, the bed collapse rapidly and then new bubbles
relatively slowly re-expand the bed to collapse again as another bubble bursts through.

5. CONCLUSIONS

A finite element approach to the solution of the two-fluid granular temperature model of
gas–solid fluidized beds has been presented. The overall method is efficient and accurate as
proven by the simulations of bubbling and slugging gas–solid fluidized beds.

Various phenomena in the two-phase flow, such as formation, coalescence and elongation of
bubbles, have been simulated and compared with the qualitative description of behaviour of
bubbles presented in the literature.

Imposing two-dimensional Cartesian or cylindrical geometries on the simulated flow often
results in poor approximations to the three-dimensional fluidized bed dynamics, as shown in
part here. Thus, it seems important to put effort into efficient overall solution methods, the
focus of this paper, so that realistic three-dimensional flows can be modelled in future work.
Three-dimensional modelling is currently one of our main strands of research, along with the
modelling of heat transfer within the bed.
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